
A Public/Private Extension of Conway's Accessor Model

Karen M. McCann and Maurice Yarrow

Computer Sciences Corporation, Mail Stop T27A-1

NASA Ames Research Center, Moffett Field, CA 94035

{mccann, yarrow}@nas, nasa. gov

Abstract

We present a new object-oriented model for a Perlpackage, based on Damien Conwag,'s "accessor" model. Our
model includes both public and private data; it uses strategies to reduce a package namespace, but still maintains a

robust and error-trapped approach. With this extended model we can make any package data or functions "private",

as well as "public ". (Note : "namespace" in this context means all the names, variables and subs, associated with a

package.)

Motivation and Background

For the past six months we have been working on a project called "ILab: The Information Power Grid Virtual Lab-

oratory". This is a Perl program which provides a Perl/Tk user interface and generates scripts for parameter studies

being run on the Grid. (Note that the expression "Grid" is now being used to describe the world-wide network of

supercomputers, both parallel and serial, that scientists are using to run scientific problems that involve data sets too

large to fit on desktop systems.) This program has an extensive user interface; we already have about 15,000 lines of

Perl, and we anticipate about 50,000 lines when all options are implemented. With such a large project, it became

relatively important for us to organize our data and operations into packages, in order to speed up development and
debugging. We have searched the Perl literature for reliable models to use for our packages, and by adding some new

ideas we have developed a new object-oriented approach.
Many Perl authors have lamented the fact that package member variables in Perl cannot be completely protected from

outside access. In spite of various methods of "protecting" variables, there is always some way that a programmer can

access the protected variables. In comparison, variables declared to be private in C++ or Java can only be accessed by

a class's own functions, or by the functions of a derived class or "friend" class (C++). Any attempt to access private

variables from outside the class will cause a compile-time error. In C++ and Java, this data protection is built in to the
language itself; in Perl, data protection has to be constructed, and a adequate construction method has not yet been

presented in the current Perl literature. The methods we have seen so far make it inconvenient, not impossible, to

access data members from outside a package.

Conway's Accessor Model

The most interesting of these methods was presented by Damien Conway [1]. He describes a truly clever and useful

way of creating a Perl "closure" inside a constructor function. This package, called Soldier (see Listing 1), illus-

trates a method for hiding the data members of a Perl package, thereby making these members private in a manner
similar to C++ and Java. The strategy is that users (i.e., programmer-users) of package Soldier cannot access the

data members directly, only through the "get" or "set" functions associated with those members.

In Conway's example, the strings name, rank and serial_num are put in an array and then used as keys in

hash %data; the anonymous sub whose reference is Saccessor is the only way to access this hash. The anonymous

sub is a closure, i.e., any local data accessed by this contained sub is made non-transient as long as the reference to

that sub does not go out of scope. Even though %data is a local (my) variable, it does not disappear after the call

tO new returns. The new sub (which is package Soldier's constructor) then blesses and returns the anonymous

sub reference, instead of blessing and returning the %data hash as $ sel f (the most commonly used Perl strategy

for creating packages). As a result, the reference returned from the call to new can be used not only to call the subs

attached to this package, but can also be used to get/set the data members.
Here, all data members except rank have been protected from assignment by putting restrictions in the accessor

sub, and by not providing set functions for them. This brings Conway's Soldier package very close to being com-

pletly object-oriented: a) the package's data members are not visible to outside users except as specified by the get/set
functions, as they would be in C++ or Java; b) the package's interface is made up of functions, not data

Listing 1: Conway's Soldier package

package Soldier;

$VERSION = 1.00;

use strict;.

use Carp;

my @attrs = qw(name rank serial_num);

sub new

{

my ($class, %args) = @_;

my %data;

@data{@attrs) = @args{@attrs};

my $accessor =

sub

{

};

my ($cmd, $attr, Snewval) = @_;

croak "Invalid direct access: use the ${cmd}_$attr method instead"

unless caller()->isa("Soldier");

return Sdata{$attr}

if $cmd eq "get";

return Sdata{"rank"} = Snewval

if ($cmd eq "set" && Sattr eq "rank");

croak "Cannot $cmd attribute Sattr";

bless Saccessor, ref($class) [[$class;

}

These methods provide the only means of accessing object attributes

(note that only rank can be changed)

sub get_name { $_[O]->('get','name') }

sub get_rank { $_[O]->('get','rank') }

sub get_serial_num { $_[O]->('get','serial_num') }

sub set_rank

{

my ($self, Snewrank) = @_;

Sself->('set','rank',$newrank

}

no strict;

package main

my $s = Soldier->new(name=>"ryan"

print Ss->get name(), "\n";

rank=>"private",serial_num=>"lO00000") ;

print Ss->get_rank(), "\n";

print Ss->get_serial_num(), "\n";

$s->set_rank("general"), "\n";

Ss->(-set","rank","Colonel");

print Ss->("get","serial_num");

print $s->get_name(), "\n";

print $s->get_rank(), "\n";

print $s->get serial_hum(), "\n";

###
#

Copyright (C) 1999 by Manning Publications Co. All Rights Reserved.

#

#

#

This code is free software. It may be used, redistributed

and/or modified under the terms of the Perl Artistic License

(see http://www.perl.com/perl/misc/Artistic.html).

#

###

...

Accessor Closure

This is an amazing trick! The Perl interpreter is very flexible and the reference to Saccessor still works for calling

the package's subs, even though Saccessor is a reference to an anonymous sub, instead of a reference to a $ self

hash. And, it does indeed make the data members private, i.e., not accessible from outside the package. However, it

has some unexpected effects: (1) some variables (rank and serial_hum) can only be set through the constructor

call to now, and the assignment in the constructor is not error-trapped; (2) there are no public data members - all

data members are private; (3) the interface to the package is only functions: no data (note that this effect may be a

desirable one); (4) the package's own subs can't set any data members except rank: the error-trap in the anonymous

sub, which is meant to prevent outside setting of data members, also prevents inside setting of the same data members;

(5) a package derived from Soldier can't have its own data, only its own functions (the Perl interpreter won't let you

treat that $accessor value as a Ssel f hash).

Now, this is carrying protection too far; we don't want to protect the package variables from the package's own

functions. Furthermore, setting variables only through the constructor may not be a good design.

Some Design Requirements

We would like a design that satisfies the following considerations: (1) the package's private variables should be only

accessible from outside through get/set functions; (2) the package's own functions should be able to freely access

all variables; the constructor should not be the only function that can set any private variable; (3) reasonable error-

trapping and initialization should be possible; (4) large amounts of code, or too many repetitions of the same pieces

of code, should be avoided; (5) the namespace of the package should not be unduly affected by these constraints (in

other words, we should not have to add too many functions or variables to our package in order to accomplish this data

hiding); (6) the design should not require large amounts of code and error-traps in the constructor itself; (7) we would

like to be able to have public data members, as well as private data members.

It is easy to see that Conway's design only satisfies considerations (1), (3). and (arguably), (4) and (5).

Nigel Chapman has presented a similar method [4]. Chapman's method is also effective, but does not satisfy (2) and

(6) above.

Why Private Variables?

The use of private variables and functions is really the cornerstone of object-oriented programming. According to

object-oriented theory, an "object" should have its own data and its own functions; it should read itselL write itselL
draw itself, error-check itself, etc. The object's private data and functions should be those data and functions that

are necessary to these private operations; the public data and functions should be those that users need to set and

call in order to use the object; these public data and functions are said to make up the object's interface. Many C++

programmers take the approach that all class data should be private except for the data that needs to be public; that,

ideally, all object data should be private, and accessible only through get/set functions. However, in practice this ideal
is rarely accomplished, since: (1) very few objects are completely free from "lateral" dependence on other objects;

(as opposed to "vertical", or inherited, dependence); (2) mostly, C++ programmers do not bother to write get and set
functions for every single data variable; (3) truly private data, in C++, introduces many lexical, logical, and procedural

complications; this is due to the large set of C++ keywords that are used for different types of data and function

protection. In Java, the same kind of complications are introduced, just fewer of them. This brings us to the contrary

position:

Why Public Variables?

Should all package data members be made private? In object-oriented theory, are there reasons for not error-trapping
data members of a package by providing get/set subs? In other words, creating public data members, which can

be assigned to without any error-trapping? (Note that the Sse].f hash strategy gives us public data members in a

package.) Well, certainly! Here are five reasons, and we are sure that readers could provide more: (1) error-trapping
is not needed; UNDEF fields are valid (example: consider a data field called "'Comment" that a user can fill in during

the course of creating some document, where the edit box for entering "Comment" only allows 128 chars.); (2) error-

trapping was done in the user interface (examples: a float or integer field which user can only enter with a slider that

already has min-max values; an edit box that only allows character entry; a dialog that will not accept a filename
unless the field is not NULL and the file exists; etc.); (3) the setting of the data, and the error-trapping of the data,

are done in different packages; (4) the package's data member was a copy of another package's data member, and the

other package had error-traps (a special case of ((3)); (5) you're developing the code and you don't know yet what

error conditions should be put on some data members, etc.

Philosophical Basis for Privatization

In object-oriented theory, there are three reasons for privatizing data and operations:
(1) Organization, enforced isolation, "encapsulation": Essentially, each object is a "library" of functions and

associated data (OR: data and associated functions; depending on the design requirements of the object. Although

objects are usually modelled on sets of data, occasionally objects need to be modeled on a particular operation.) If

objects are well designed, code will be "modular": relatively free from interdependencies, and easy to debug since
object operations are limited in scope to that object. This encapsulation allows internal representation to be changed

without affecting any users of an object. There are many types of objects that do not fall into this library category;

however, the organizational principle still applies. It can be argued that organizational considerations are independent

of privatization; that is, we get the organizational improvements of organizing code into objects, whether we make the

object data and functions private, or not.

(2) Error-trapping: Since the initialization and assignment of private variables is error-trapped, it should be either
difficult or impossible for a programmer to assign incorrect data to the private members of an object. Typically, the set

functions associated with each data member should prevent assignment to values that are not allowed. This prevents a

large amount of possible programming mistakes.
(3) Paranoia: "Programming Correctness": This appears to be one of the primary "'philosophical" motivations

behind private data. The theory is that programmers, who have to use objects designed by other programmers, cannot

introduce incorrect data. or incompatibilities, into the used/derived objects as long as the base objects have private
data and functions. At its worst, this kind of thinking leads to the delusion that correctly designed objects will not only

provide for every kind of error that might ever possibly happen, but also_ that these correctly designed objects will

never need to be re-designed.

The organizational and error-gapping benefits of programming with objects and hidden data are generally accepted

as "Good Things" by programmers. The third consideration - which, as pointed out above, is based on Programming

Correctness - is a sticky point that generates much debate, both formal and informal.

Interestingly enough, it can be argued that private data and functions do nothing to increase the extensibility of

an object, and in fact may interfere with it. Typically programmers extend objects by deriving new objects from base

objects; the derived object has everything the base object has, plus more if needed, and the base object's functions

can be overwritten by the derived object, also as needed. In C++ this can be especially problematic; if the base

object's data is private (in C++, only visible to the base object) when it should be protected (in C++, also visible to

any objects derived from the base object), the programmer of the derived object can find that it is impossible to extend

the base object as necessary. Since the programmer of the base object typically does not know what future design

considerations will be brought to bear upon objects derived from the base object, this kind of "cut-off" happens much

more often than it should; and, when it does, the programmer of the derived objects cannot do anything except modify

the base class. (However, sometimes this may not be possible; we provide for this case in our derived class, Listing 3.)

However, we would still like to get the benefits of hidden data out of a Perl package, and especially without being

too strict about it. Here is an extension of Damien Conway's Soldier class, which satisfies more of the criteria

mentioned above, and gives us some added benefits, as well:

Listing 2: Extended Soldier package

...

Soldier .pl

Sample package that illustrates Object Oriented data hiding by

using a Perl "closure".

Based on "soldier.pl" written by Damien Conway.

package Soldier;

SVERSION = 2.00;

use strict;

sub new { # CONSTRUCTOR for package SOLDIER

my ($class, %args) = @_: # hash "args" is values passed in

Create a $self hash, init/add the one public variable to it

my Sself = {};

Array of PUBLIC data member names; assign if passed in

my @PublicNames = qw(SoldierName);

foreach my Sattr (@PublicNames)

{ if (defined($args{$attr)))

{ $self->{Sattr} = $args{$attr}; } }

Create anonymous subs and put refs to them into the Sself hash :

my %PrivateHash; # this hash made permanent by closure

$self->{SoidierGet} =

sub { my ($attr) = @_; return $PrivateHash{Sattr};) ;

$self->{SoldierSet} =

sub { my ($attr, Snewval) = @_;

my ($package, $filename, $1ine) = caller();

if ($package->isa('Soldier'))

{ return ($PrivateHash{$attr} = Snewval);

else

{ print "_RROR : illegal attempt to set ",

"a closed variable\n"; return; } };

Alternate error trap:

if (Spackage->isa('Soldier') && $filename eq 'Soldier.pl'

bless Sself, ref($class) llSclass;

An array of PRIVATEdata membernames;assign if passedin by
calling the SAMENAMEsubs :
my@PrivateNames= qw(RankSerialNumber);
foreachmy Sattr (@PrivateNames)

{ if (defined(Sargs{$attr)))
{ $self->$attr(Sargs{$attr)); } }

return $self;
)

These methods are the only way to access "private" object attributes

...

sub Rank {

my ($self, Svalue) = @_;

Only allow rank to be set to one of these values :

my @RankNames =

qw(Private Sergeant Lieutenant Corporal Major Captain General);

if (defined($value))

{ if (grep {$value eq $_} @RankNames)

{ return Sself->{SoldierSet}->('Rank', Svalue); }

else

{ print "attempt to set rank to an non-allowed value\n"; } }

else

{ return Sself->{SoldierGet)->('Rank'); }

sub SerialNumber {

my ($self, Svalue) = @_;

if (defined(Svalue))

{ # Don't allow serial number to be set to a negative value:

if (Svalue > 0)

{ return Sself->{SoldierSet}->('SerialNumber', $value);)

else

{ print "attempt to set SerialNumber to less than 0\n'; })

else

{ return Sself->{SoldierGet)->('SerialNumber'); }

sub DumpSoldier {

my Sself = shift;

print "Name = ", $self->{Name), ", Rank = ", $self->{SoldierGet)->('Rank')

", Serial Number = ", Sself->{SoldierGet}->('SerialNumber'), "\n';

}

...

no strict;

package main;

my Ss = Soldier->new(Name=>"Ryan",Rank=>"Private",SerialNumber=>"1000000" ;

print "\nSoldier after call to new = \n";

Ss->DumpSoldier();

print "\nSetting the name, public variableln":

Ss->{Name) = "GI Joe"; Ss->DumpSoldier();

print "\nSetting the rank, private variable\n";

Ss->Rank("General") ; Ss->DumpSoldier();

print "\nSetting the serial number, private variableln';

Ss->SerialNumber("1010101");$s->DumpSoldier();

print "\nGetting the name\n";print Ss->(SoldierName},*\n";
print "\nGetting the Rank\n"; print Ss->Rank(),"in";
print "\nGetting the SerialNumberkn"; print Ss->SerialNumber(), "\n';

print "\nTest: trying to set private variable Rank via accessorkn";

$s->{Set}->('Rank', 'General');

...

Get/Set Functions and the Same Names

In Perl it is easy to "collapse" the get and set functions into one function. If an additional argument is passed into the

function, it is a set operation; else, it is a get operation. This reduces our get/set namespace by 50%: only one get/set

function per data member.
Here is another simplification: in the above example, the data members have the same names as their associated get/set

functions. These data names are really just strings that key into the %PrivateHash hash, and they are hidden by the

Perl closure. The effect of this strategy is to further reduce the namespace of variables and associated get/set functions;

again, reduced by 50%. By collapsing the get/set functions, and using "Same Names", the effective namespace for
data members and their get/set functions is reduced by a total of 75%. Over the course of a large program, this effect

is non-trivial: there are fewer names for a programmer to remember or reference; the code is simpler, making it easier

to write, debug, and modify.
Additionally, we want to make sure that the accessor reference returned from the "new" function cannot be used

outside of the package's own functions. Conway shows us how to do this: use the caller function, which returns

the package name, file name, and line number of the calling function, from within a called sub. By using function
ca'l ler inside the accessor closure, we can tell where the accessor was called from; one line of code suffices to

eliminate calls that did not come from inside package Soldier or a descendant package. Now our data members

are la-uly private, i.e., not visible from outside a package, but easily accessible from inside the package. As far as code

using (or calling) package Soldier is concerned, the effect is even more amazing: the data members of the package are

as easy to access as public variables, but they are actually private!
From within a package's functions, it is now more inefficient to get a private variable than a public variable:

$self-> {SoldierGet)-> ('Rank');(aprivatevariable)

- is a function call plus a hash lookup;

$ s e 1 f - > {Name } (a public variable)

- is only a hash lookup. The overhead from the extra function call is not very much, but if a package function needs to

use a private data member in a loop, the function can create a local copy to use in the loop:
my $1ocalRank = Sself->{SoldierGet}->('Rank') ;

-otherwise,justput $self-> {SoldierGet }-> ('Rank') in-line,asyou would put Ssel f -> {Name } in-line.

Now, functions inside package Soldier can get/set any data member; we don't have to put error-trapping inside the
accessor function, as in the first example. Error-traps can be put where they belong, in the get/set functions. In the

above example, data member Rank is limited to a small set of allowable values, and data member SeriaiNumber

is restricted to values greater than 0; data member SoldierName has no error traps. We do initialization in the

new sub. as well: 1) for public data members, simply assign by keying into the %args passed in; 2) for private data

members, also key into %args, but call the Same Name subs instead of assigning. If it were advisable to initialize any
data members that were not set in the constructor arguments, then we would call a separate initialization function near

the bottom of the constructor. This function would assign default values to any data members that are still undefined

after the constructor arguments are processed.
In the first version of Soldier, the setting of data members in the constructor is not error trapped. The line of code:

@data{Oattrs} = @args{@attrs}; # set member values to args values

- simply assigns to data members the values passed in. without doing any error-checking. Note that the call to new

makes use of the Perl "hash" assignment syntax in the argument list:
my $s = Soldier->new(Name=>"ryan",Rank=>"private",SerialNurdDer=>"1000000") ;

Our method of calling the Same Name functions catches errors in the constructor call; for example, if the constructor

was called with argument Rank => ' General ', the line of code in the second example :

Sself->$attr(Sargs{$attr}) ;

- will call the sub Rank with argument 'General', which will test the argument for an allowed value. Note that if

we disallowed or ignored any arguments passed in to the constructor, users of package Soldier would be forced to set

data members one by one with the get/set functions. We wanted to avoid this, since the hash assignment syntax in an

argument list is standard Perl, and using it for several variables at once is very convenient.

In the first example, Conway returned Saccessor from the constructor, only to cut off access to it from outside

(in "Variation for the Paranoid"); what, then is the point of returning it from the constructor? In the second version,

instead of returning $accessor, we return $self; we have two accessors (one for getting, one for setting), and

we just plug references to these functions into the $ self hash. The accessors are restricted as before so no user of

package Soldier can call them from outside the package. Package Soldier now has two hashes of data members: a

hash called %PrivateHash which contains all private data members, and the $sel f hash that we are accustomed

to using, which will contain public data members.

Improvements

Note that since data member Name is now public, we didn't provide a get/set function for it; users of package

Soldier can get or set data member "Name" directly through the Sself hash. 1) the get accesser doesn't need a

"caller/isa" trap: any outside code can "see" the private variables, but still has to go through an error-trap to set them;

2) we have both public and private variables in package Soldier; 3) we can still allow hash assignment syntax in the

call to the constructor, and this hash syntax can be used for both public and private variables, and, any private variables

in the hash syntax are still error-trapped; (Note that the use of an Init function is recommended by OOP experts.) 4)

private data is readily accessible by all package subs, and all derived package subs. Note the ease of using our new

package Soldier: private and public data members are named in the same way, and the difference of accessing them is

just trivial syntax:

Ss->{Name} = "GI Joe";

- is an assignment to a public data member, while:

Ss->Rank ("General") ;

is a function call that assigns a value to a private data member. This, after all, is the point of our package model: we

are willing to put up with some extra lines of code in a package, if it makes the calling code simpler, more robust,

and easier to use; since, over the course of the large ILab project, we are going to have a lot more calling code than

package code. The error-trapping is all in the package; we don't have to bother with error-trapping in the calling code.

By-passing the Error-traps

As Conway has pointed out, a determined programmer can still bypass the error-trapping in the set accesser, by re-

opening package Soldier outside of file Soldier.pl, and then issuing a direct set call as in the test above. Here is his

example [1,p. 301-302]:

my Ssoldier = Soldier->new(name=>'Alexander', rank => 'General');

package Soldier;

Ssoldier->('get' , 'name') ; # call the accesser directly

But, we're not worried: as (who was it? footnote here) said, "Perl assumes you won't come into the house because

you haven't been invited, not because the owner has a gun.'" In fact, the main purpose of all this error-trapping and

privatizing is not to "keep programmers out of" a piece of code: instead, it is to make it easier for any programmer to

see where a mistakes are made during code development.

On the other hand, a more determined programmer might extend the error-trap in the accesser function, by using

the alternate error trap. Instead of:

if ($package->isa ('Soldier'))

{ return $PrivateHash($attr} = Snewval; }

use:

if (Spackage->isa('Soldier') && Sfilename eq 'Soldier.pl')

{ return SPrivateHash{$attr} = Snewval;)

Well, now the merely determined programmer is in trouble: re-opening the package won't work anymore. The only

way to bypass the error-trapping is to add code to the file Soldier.p!! But, that is the point: if a programmer has to

modify a base class, then the programmer should modify the base class, but should not do the modification in an
outside file where it is hard to find.

As pointed out above, it is a mistake to assume that a base class will never need to be modified. In our second
version of Soldier, for example, the sub Rank doesn't include all possible strings describing Rank, and a user of

package Soldier might well need to extend it. Of course this user could derive a new package from Soldier, and give

this derived package its own private variable named Rank, and overwrite the Rank sub; this might be preferable in

some programming situations.

Derived Packages and Namespaces

Note that this additional error-trap in the accessor function means that derived packages can't use the get/set accessors

directly, either: like any other outside package, a derived package must use the base package's Same Name functions

for the base package's private data. In C++ and Java, derived and parent classes can have data variables with the same

names: the class namespaces are distinct. In Perl, the namespace situation is more complicated.
In C++, Java, and Perl, if a derived object has a function with the same name as a function in the parent object, the

derived object's function is said to overwrite the parent's function; i.e., the derived object's function is called instead

of the parent's function. In this situation it is often necessary for the derived object's function to call the parent's
function, as well as to execute its own statements. In all of these languages, the parent's function does not disappear,

but is still available through the syntax ParentName : : FunctionName.

In Perl, if parent and derived packages both have public data members with the same names, the derived package's
data member overwrites the parent's data member: this is because the parent and derived packages are sharing the

same namespace, which in this case is the $self hash. Derived Perl packages share their parent's data namespace,
but the function namespace remains distinct. As a result, Perl derived packages that wish to have their own data - in

addition to the parent's data - must in their "'new" functions call the parent's "new" function. For example:

package SoldierBoy;

use base qw(Soldier);

sub new {

my ($class, %args) = @_;

my Sself = SUPER::new(%args

$self->{Memberl} = undef;

$self->{Member2} = I0;

bless Sself,Sclass;

return $self;

}

) ; # SoldierBoy gets Soldier's data

SoldierBoy's public variables

re-blessing of $self

Here, package SoldierBoy is derived from package Soldier; instead of instantiating S sel f as a empty hash,
SoldierBoy calls Soldier new, and uses the return value as its Sself hash. SoldierBoy can add as many
values as it wants to this Sself hash; in this way, the SoldierBoy package has its own public data. Note the

danger, though : if Soldier also had data members called Memberl and Member2, SoldierBoy's initialization

of these two members would wipe out the values that Soldier had put in the same members. If Soldier's values
were needed for some reason, SoldierBoy would have to either make copies of those members under different

names, or re-name its own members so that there are no name collisions. (The first of these alternatives is not a good

design approach.)
Since our version of Soldier has both private and public data, we would like a design where any package de-

rived from Soldier can have its own public and private data, as well. It is actually very easy to accomplish this.
SoidierBoy can have its own get/set accessor references and %PrivateHash, in the same way that Soldier
does; the only caveat is that SoldierBoy must not overwrite the parent's get/set accessor values in the $sel f hash
that they share. This is why we have given long names - SoldierGet and SoldierSet - to the parent's acces-
sor references: SoldierBoy will have to have similar unique names (Sold-erBoyGe': and SoldierBoySet)
so that there are no namespace collisions. Listing 3 illustrates a version of SoldierBoy that overwrites one of
Soldier's private variables.

Listing 3: Derived Package SoldierBoy.pm

use Soldier;

package SoldierBoy;

use base qw(Soldier);

use strict;

sub new {

my($class, %args) = @_;

my Sself = new Soldier(%args _; # call parent's constructor

Array of PUBLIC data member names, assign if passed in :

my @PublicNames = qw(PublicField);

foreach my SName (@PublicNames)

{ if (defined(Sargs($Name)))

{ $self->{$Name) = Sargs{$Name};))

CLOSURE : accessor functions which make PrivateHash a permanent

feature of this instance of this package

my %PrivateHash;

$self->{SoldierBoyGet} =

sub { my ($attr) = @_; return SPrivateHash{$attr););

Sself->{SoldierBoySet} =

sub { my ($attr, Snewval) = @_;

Find out who called this anonymous sub; if not from

THIS package or descendant, dump 'em out :

my ($package, Sfilename, $1ine) = caller();

if ($package->isa('SoldierBoy') && Sfilename eq 'SoldierBoy.pm')

{ return ($PrivateHash{$attr} = Snewval); }

else

{ print "SoldierBoy ERROR : illegal attempt to set ",

"a closed variable\n"; return; } };

bless $self, ref($class) II$class;

An array of PRIVATE DATA names; call Same Name functions to init

private members to any values passed in :

my @PrivateNames = qw(Rank DateOfBirth HealthCode) ;

foreach my $Name (@PrivateNames)

{ if (defined($args{$Name}))

{ Sself->$Name($args{$Name}); } }

return Sself;

}

sub DateOfBirth {

my (5self, Svalue) = @_;

if (defined(Svalue))

{ # Don't allow DateOfBirth to be set to a negative value :

if ($value > 0)

{ return Sself->{SoldierBoySet}->('DateOfBirth', $value) ;)

else

{ print "attempt to set DateOfBirth to less than 0\n'; }

else

{ return Sself->{SoldierBoyGet)->('DateOfBirth'); }

sub HealthCode {

10

my ($self, Svalue) = @_;

if (defined(Svalue))

{ if ($value eq 'OK' II Svalue eq 'FlatFooted')

{ return Sself->{SoldierBoySet)->('HealthCode', Svalue); }

else

{ print "attempt to set HealthCode to non-allowable string\n'; }}

else

{ return Sself->{SoldierBoyGet}->('HealthCode');)

sub Rank {

Derived class's overwritten sub for setting OWN version of a PRIVATE

VARIABLE

my ($self, $value) = @_;

Only allow rank to be set to one of these values :

my @RankNames =

qw(Private Sergeant Sergeant-Major Lieutenant Corporal Major Captain General);

if (defined(Svalue))

{ if (grep {$value eq $_) @RankNames) # if value is in RankNames

{ return Sself->{SoldierBoySet)->('Rank', Svalue) ;)

else

{ print "Soldier: attempt to set rank to non-allowed value\n'; })

else

{ return Sself->{SoldierBoyGet)->('Rank') ;)

sub DumpSoldier {

my Sself = shift;

print "SOLDIER BOY dump soldier\n";

print "Name = ", Sself->{SoldierName}, # parent's public member

",\nSerial Number = ", Sself->SerialNumber(), # parent's private member

",\nRank = ", Sself->Rank(), # own overwritten private member

",\nPublic field = ", Sself->{PublicField}, # own public member

",\nDateOfBirth = ", $self->DateOfBirth(), # own private members

",\nHealthCode = ", 5self->HealthCode(), "\n";

)

I;

...

This derived package has its own public data and its own private data. In addition, one of its private data members,
Rank, overwrites a private data member in parent package Soldier. Note that the SoldierBoy constructor calls
Soldier's constructor, passing in %args. Inside Soldier's constructor, when the lines of code :

my @PrivateNames = qw(Rank SerialNumber);

foreach my $attr (@PrivateNames)

{ if (defined(Sargs{$attr)))

{ $self->Sattr(Sargs{Sattr}); } }_

are executed, instead of calling Soldier' s Rank sub, SoldierBoy' s Rank sub gets called. (Likewise, for

any other calls inside package Soldier's subs to sub Rank.) In this way, SoldierBoy has replaced Soldier's

private variab.le Rank with its own version of Rank - and also, of course, its own version of the (Same Name) Rank

sub. The advantage of this design feature is that a user of package Soldier is no longer prevented from replacing

a parent's private variable if necessary. If this programmer-user cannot modify the code in package Soldier for

some reason, (e.g., if the Soldier package was in some library format, or the programmer-user couldn't modify the

distributable Soldier package) this feature can be a life saver, since the sins of the parent are no longer visited upon

the children (so to speak).

I1

Drawbacks

Of course, our design model has a few "gotchas". Here they are :

1) the parent's subs must not call the accessors directly except in the Same Name subs; otherwise, these calls will be
accessing the parent's version of the private variable, not the child's version. If this happens it will probably introduce

subtle bugs that will be hard to find.

2) if the child wants to overwrite a parent's variable, the child must not only have its own variable in its own private

hash, it must also have its own (overwritten) version of the parent's Same Name sub.

3) when a parent's private variable is overwritten in this way, it could easily introduce bugs into the parent's subs, since

the variable may now take on values not allowed for in the parent's subs.

4) parent and child packages have to have unique names for the accessor sub references.

This design model is somewhat "stiff", i.e., non-flexible, in the sense that once the parent package is written this way,

the child packages should follow the same design model (although, they don't have to). Overall, we feel that the

advantages outweight the disadvantages.

Varieties of Packages

Now we have many options available for encapsulation. Our packages can have:

l)all private data (just don't put in a $ s e 2 f hash, and return the $ac c e s s o r from the constructor);
2) all public data (with the Sself hash, this is the way we have been doing it anyway);

3) a mixture of public and private data, as in the second Soldier example;

4) private data that is invisible from outside the package (put the caller error-trap in the get accessor, as well as in

the set accessor)

5) private functions that are not callable from outside (just put the caller error-trap inside the function that you want

to be private.)

Summary

By using Damien Conway's accessor design, along with collapsed get/set functions, Same Name naming convention,

an error-trapped constructor, and two data member hashes, we have a package design that gives us private variables

that are still easy to access, and public variables as well. This approach is not only robust, but also gives us a simple

package design without sacrificing flexibility or requiring large amounts of code. In C++ and Java, making a variable

or function private means restricting its lexical scope, without any error-trapping considerations; in our example,

"private" means error-trapped and lexically restricted. In addition, we have a feature that is not possible in C++ or

Java: a derived package can overwrite its parent's private data as well as its parent's functions (-provided that the base
package's subs only access the private data members through the Same Name functions, and do not call the accessor

directly.)

We propose using the term "closed variables" to refer to data members that are made private in this way, since these

data members are not really private as in C++ or Java.

Overall, we expect this approach to cut down development and debugging time in addition to the speed and ease of

use already offered by Perl. Our opinion is that Perl takes object-oriented programming to a more evolved level than

C++ or Java, since Perl is just as powerful, but does not have the "decoration of multiple keywords.

References

[1] Damien Conway, "Object-Oriented Perl", Manning Publications (2000). 299-302

[2] Jon Orwant. "Perl5 Interactive Course Certified Edition," Waite Group Press (1998). Chapter 7.

[3] L.WalI, T.Christiansen, and R.Schwartz, "Programming Perr', O'Reilly and Associates, Inc. (1996) 289-325.

[4] N.Chapman, "Hiding Data Objects with Closures", The Perl Journal, Vol.4, No. 3. Fall 99, 50-55.

12

